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Abstract
Dynamic stability derivatives are essential to

predicting the open and closed loop performance,
stability, and controllability of aircraft. Computational
determination of constant-rate dynamic stability
derivatives (derivatives of aircraft forces and moments
with respect to constant rotational rates) is currently
performed indirectly with finite differencing of
multiple time-accurate computational fluid dynamics
solutions. Typical time-accurate solutions require
excessive amounts of computational time to complete.
Formulating Navier-Stokes (N-S) equations in a
rotating, noninertial reference frame and applying an
automatic differentiation tool to the modified code has
the potential for directly computing these derivatives
with a single, much faster steady-state calculation. The
ability to rapidly determine static and dynamic stability
derivatives by computational methods can benefit
multidisciplinary design methodologies and reduce
dependency on wind tunnel measurements. The
CFL3D thin-layer N-S computational fluid dynamics
code was modified for this study to allow calculations
on complex three-dimensional configurations with
constant rotation rate  components  in  all   three axes.
These CFL3D modifications also have direct
application to rotorcraft and turbomachinery analyses.
The modified CFL3D steady-state calculation is a new
capability that showed excellent agreement with results
calculated by a similar formulation. The application of
automatic differentiation to CFL3D allows the static
stability and body-axis rate derivatives to be calculated
quickly and exactly.
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Introduction
Dynamic derivatives quantify the aerodynamic

damping of aircraft motions and are used to predict the
longitudinal short period, lateral pure roll, and lateral
Dutch roll behavior of the configuration. Analytical,
empirical, and vortex lattice methods of estimating
these derivative values are not suited to unconventional
configurations or high-speed, compressible flows
dominated by viscous effects. Evaluating
unconventional configurations is of growing interest
due to the design and analysis of next generation
attack, transport, and reusable launch vehicles.
Examples of these new, unconventional designs are the
blended wing body and the X-33 configurations. A
methodology of using high fidelity, noninertial Euler
and Navier-Stokes (N-S) calculations gives improved
capability in predicting these dynamic stability
derivative values in compressible flow on conventional
or unconventional designs.

Due to cost and time limitations, it is impractical to
construct and test numerous wind tunnel models during
initial prototyping. Therefore, measurement of the
effects of aircraft dynamics on preliminary
configuration aerodynamic forces and moments is
limited. The application of automatic differentiation to
a noninertial reference frame Euler and N-S code has
potential for providing designers with insight, gained
from higher fidelity codes, into aircraft dynamics at the
preliminary design stage. This design stage is when
control surface size and preliminary control laws are
being evaluated. Computational determination of these
derivatives is cheaper and faster than performing wind
tunnel measurements and will aid rapid prototyping
and multidisciplinary design.

The modification of the CFL3D1 (Computational
Fluids Laboratory Three-Dimensional) computational
fluid dynamics (CFD) code to perform calculations in
a noninertial, rotating reference frame has the potential
to reduce the reliance on forced-motion wind tunnel
and free-flight wind tunnel tests. Considerable
previous work performed on turbomachinery has
demonstrated noninertial, rotating reference frame
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fluid mechanics as a means to greatly reduce
computational time (for an example see Ref. 2). Kandil
and Chuang3,4 have demonstrated noninertial reference
frame calculations for general motions on rolling
aircraft stability problems. Limache and Cliff3 devised
an efficient scheme for the special case of steady-rate
motion and applied this technique to stability and
control work with a two-dimensional (2-D),
unstructured grid code and the sensitivity equation
method.

The noninertial modifications to CFL3D were
initially validated in this study for a 2-D NACA0012
airfoil case with comparisons to previously published
results by Limache and Cliff.5 The modified CFL3D
was then applied to the full three-dimensional (3-D)
Lockheed Martin Tactical Aircraft Systems—
Innovative Control Effectors™ (ICE)‡ configuration6

(Fig. 1) with a turbulent Navier-Stokes calculation.

Technical Approach
This study adopted the Limache and Cliff5

approach. There were two major aspects to this project.
The first was modifying CFL3D to perform
calculations in a rotating, noninertial reference frame.
These CFL3D modifications included adding a source
term to the residual calculation and modifying the
boundary and initial conditions. The second aspect was
the application of ADIFOR7,8 (Automatic
Differentiation in FORTRAN) to the latest parallel
version of CFL3D. This code was used to compute
derivatives of aircraft forces and moments with respect
to the flow angles and constant rotational rates in the
roll, pitch, and yaw axes. The application of ADIFOR
to the unmodified version of CFL3D has been
performed successfully to calculate static stability
derivatives9 (derivatives of aircraft forces and moments
with respect to angle of attack and angle of sideslip).

CFL3D Introduction
The CFL3D code is a FORTRAN 77 (F77)

Reynolds-averaged thin-layer N-S flow solver for
structured-volume grids. CFL3D was written primarily
at NASA Langley Research Center and is undergoing
continuous development and improvement. The code
has the ability to compute inviscid Euler, laminar N-S,
and turbulent N-S calculations. The code employs
parallelization by decomposing the computational
domain into many separate blocks.  These individual
blocks are analyzed in separate processes that
communicate with each other by means of the Message
Passing Interface (MPI) standard. Analysis for this
                                                                
‡ The use of trademarks or names of manufacturers in this report is
for accurate reporting and does not constitute an official
endorsement, either expressed or implied, of such products or
manufacturers by the National Aeronautics and Space
Administration.

study has been performed in an inviscid, Euler mode
and a viscous mode with the N-S equations coupled to
the Spalart-Allmaras (S-A) turbulence model.1

CFL3D Noninertial Reference Frame Modifications
There are two reference frames depicted in Fig. 2:

the inertial reference frame (denoted with upper-case
symbols) and the noninertial frame (denoted with
lower-case symbols). The CFD grid (depicted as a
cube) is embedded in the noninertial reference frame.
Positions relative to each of these two reference frames
are quantified by three scalar quantities (X, Y, Z and x,
y, z) that describe location along three orthonormal unit
vectors (I, J, K  and i, j, k). Note that bold type face
indicates vector symbols. The inertial frame is fixed in
space and the noninertial frame can translate and rotate
with the rotation described with three scalar
components (ωx , ωy, ωz) of the rotation vector ω . The
noninertial frame and CFD grid follow a curved path
(denoted as the curved, dashed arrow) as they
simultaneously translate and rotate.

Each of these coordinate systems has advantages
and disadvantages. An advantage of the inertial frame
is that it is not moving (the existing stationary grid N-S
equations in CFL3D are only formulated for
nonmoving frames). An advantage of the noninertial
reference frame is that it moves with the CFD grid;
therefore, the stationary grid formulation of the
CFL3D N-S equations is already coded in this frame of
reference with local (lower-case) variables. A
disadvantage of the noninertial reference frame is the
current, stationary grid N-S equations are not
formulated correctly because the CFD grid and its
associated reference frame are rotating (e. g.,
accelerating) in this study to simulate aircraft
constant-rate motion.

In order to correctly modify the stationary grid N-S
equations to calculate valid solutions with a translating
and rotating CFD grid, the relation between the
descriptions of the same point in both reference frames
(b and B) must be sought. Note that all of these
derivations are performed at the instant in time when
the unit normal vectors of both systems are parallel,
which removes the necessity of a rotational coordinate
transform. Also, the noninertial reference frame is
translating and rotating at a constant rate; therefore
angular acceleration, ω& , is zero. A nonzero value of ω&
can be included to model more general motions,3,4 but
such was not the intention of this study.

There are two points in space of interest for this
derivation: The position of the noninertial frame
origin, C, expressed as a function of the inertial
coordinates  (X, Y, Z) and a fluid particle, B  and b,
expressed in the inertial and noninertial coordinates (X,
Y, Z and x, y, z), respectively. At any instant in time, it
is very easy to express the relation of the position of a
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point in both coordinate systems by addition of
vectors.

= +B C b (1)

The next step is to find the relationship between the
instantaneous velocity of a point expressed in both
coordinate systems. The velocity is found by
differentiating the expression for the vector relation of
position, Eq. (1), with respect to time. Note that there
will be an added complexity to computing the
derivative of any vector quantity expressed in the
noninertial frame, e. g., b, because the unit normal
vectors (i, j, k) are changing as a function of time, due
to rotation. To find the derivative of b, the product rule
is used on the multiplication of the scalar components
(x, y, z) and unit vectors (i, j, k). The relation between
the instantaneous derivatives of the unit vectors
and × bω is found by taking the limit on the derivative
as dt goes to zero.10

d d d
dt dt dt

= +B C b
(2)

= + + ×B C b bω& && (3)

Now that the velocity relationship, Eq. (3), has
been derived, the far-field boundary conditions of the
noninertial CFD problem can be discussed. For free
stream boundary conditions, the fluid particles are at
rest in the inertial frame; therefore their velocity,

∞
B& ,

is zero. The expression for the fluid velocity at the
CFD grid free stream boundary conditions is 

∞
b& . The

aircraft, the noninertial reference frame, and the CFD
grid are all translating together at a velocity,C& , which
is negative the free stream velocity, u∞. The boundary

values for 
∞

B& and C& are substituted into Eq. (3),

which is rearranged to form Eq. (4).

∞ ∞∞
= − ×b u bω& (4)

Therefore, the free stream boundary conditions can
be described as the combination of a uniform flow
component, u∞, and a rigid body rotation component,

∞
×bω . The CFL3D boundary conditions at the near-

field or solid surface boundary conditions are not
affected in this noninertial formulation.

The expression for acceleration is computed by
differentiating the velocity relation, Eq. (3).10 The time
derivatives of the b and b&  terms are determined in the
same fashion as the derivative of the b term was
derived in Eq. (3). This relation is valid for any vector
quantity expressed in a noninertial frame. Note that

theω& term is zero because the rotation rate is assumed
to be constant in this steady-state formulation.

( )dd d d
dt dt dt dt

×
= + +

bB C b ω& &&
(5)

( )= + + × + × + × + × ×B C b b b b bω ω ω ω ω&& && & &&& & (6)

( )2= + + × + × ×B C b b bω ω ω&& && &&& (7)

Now the acceleration of the origin of the
noninertial, grid-fixed reference frame, C&& , must be
sought. In this formulation, the noninertial reference
frame (Fig. 2) is following a curved path (the dashed
arrow) through inertial space as it simultaneously
translates (C& ) and rotates (ω ). The origin of the
noninertial reference frame must accelerate to follow
this curved path. The expression for the acceleration of
a grid that is moving in a curved path with constant
rotation rate is

, ∞= × = × −C C C uω ω&& & && (8)

Note that this reference frame origin acceleration is
zero when C& is parallel to ω.

Now that the C&& term is known, the expressions for
the difference between the accelerations computed in
the inertial frame and the noninertial frame (CFD grid)
can be completed. This difference in acceleration is
computed by subtracting the acceleration of a fluid
particle in the noninertial frame, b&& , from the
acceleration of the same particle expressed in the
inertial frame, B&& . By accounting for this difference in

acceleration (pseudo-acceleration, −B b&&&& ), equations
describing the motion of particles measured in a
noninertial frame can correctly mimic the total
acceleration of these fluid particles in the inertial
frame.

( )2∞− = × − + × + × ×B b u b bω ω ω ω&& &&& (9)

The goal is to model constant-rate CFD grid
rotation and translation with a steady-state CFD
calculation. The difference in acceleration between an
inertial and a noninertial frame of reference is
employed to form a source term correction to the N-S
equations in CFL3D. To illustrate the formulation of
the source term, the existing implementation of the
stationary grid N-S equations in CFL3D must be
examined. In the CFL3D code, the N-S equations are
expressed in a regular-spaced, Cartesian grid
coordinate system. The generalized grid coordinate
system that defines the problem (x , y, z) is internally
mapped by CFL3D to this regular-spaced Cartesian
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grid (ξ, η, ζ) with a coordinate transform. The N-S
equations are written in the regular-spaced, Cartesian
grid coordinate system as1

ˆ ˆˆ ˆ ˆ ˆˆ ( ) ( ) ( )
0v v v

t ξ η ζ
− − −∂

+ + + =
∂ ∂ ∂ ∂

F F G G H HQ
(10)

where Q is a vector of the conserved variables. The
conserved variables are a combination of density, ρ,
velocity components (u, v, w) and total energy per unit
volume, e. The vector Q̂  is the conserved variables

divided by J.

[ ]1ˆ Tu v w e
J J

ρ ρ ρ ρ= =QQ (11)

The Jacobean (J) of the coordinate transformation from
the Cartesian to the generalized coordinate system is

( )
( )

, ,

, ,
J

x y z

∂
=

∂

ξ η ζ
(12)

The inviscid flux terms are F, G, and H and the

viscous flux terms are Fv, Gv, and Hv. The F̂ , Ĝ , Ĥ ,
ˆ

vF , ˆ
vG , and ˆ

vH  flux terms are created by dividing by
J in the same manner as Q was. For a nondeforming
mesh (J is constant with respect to time), the solution
is advanced in time with the residual, R .

1 ( )R
J t

∂ =
∂
Q Q (13)

The residual is computed as

ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( )
( ) v v vR

ξ η ζ

 ∂ − ∂ − ∂ −
= − + + ∂ ∂ ∂  

F F G G H H
Q (14)

To permit noninertial calculations, a source term
(S) is added to the standard CFL3D residual
calculation.

1 ( )R
J t

∂ = +
∂
Q Q S (15)

The source term is a vector with 4 nonzero
components (the continuity equation is not affected).

0
T

x y z eS S S S
J
ρ  =  S (16)

The momentum equation source terms (Sx, Sy, and
Sz) are the three components of the pseudo-acceleration
( −B b&&&& ). The “work” done by these momentum source
terms must be included in the energy equation. The
energy equation source term (Se) is the dot product of
the local velocity with the pseudo-acceleration.

The N-S equations in CFL3D are written in
conservative form, so the vector source term for the
four momentum and energy equations must include the
volume of each computational cell ( 1J − ) and the
density, ρ, of the fluid. The energy equation source
term is the dot product of the local flow velocity, b& ,
with pseudo-acceleration,

( )( )
( )( )
( )( )

( )( )

0

2

2

2

2

x

y

z

J
ρ

∞

∞

∞

∞

 
 

× × + × − × 
 

× × + × − × =
 
 × × + × − ×
 
 • × × + × − ×  

b b u

b b uS

b b u

b b b u

ω ω ω ω

ω ω ω ω

ω ω ω ω

ω ω ω ω

&

&

&

& &

(17)

where [ ]x y z=b  and [ ]u v w=b& . For

additional papers on the source term equations and
associated physics of similar applications of this
theory, see Refs. 2–5. Refs. 4 and 5 also include
reference frame angular and translation acceleration
terms.

ADIFOR Automatic Differentiation
Automatic differentiation is a technique for

augmenting computer programs with statements for the
computation of derivatives. This technique relies on
the fact that every function, no matter how
complicated, is executed on a computer as a
(potentially very long) sequence of elementary
operations such as additions, multiplications, and
elementary functions (e. g., sine and cosine). By
repeatedly applying the chain rule of differential
calculus to the composition of those elementary
operations, derivative information can be computed
exactly and in a completely automated fashion.

The ADIFOR process is a technique that applies
the chain rule of differentiation to propagate, equation
by equation, derivatives of intermediate variables with
respect to the input variables. The ADIFOR tool has
been developed jointly by the Center for Research on
Parallel Computation at Rice University and the
Mathematics and Computer Sciences Division at
Argonne National Laboratory. In general, to apply
ADIFOR to a given F77 code, the user is only required
to specify those program variable names that
correspond to the independent and dependent variables
of the target differentiation. The ADIFOR tool then
determines the variables that require associated
derivative computations, formulates the appropriate
derivative expressions, and generates new F77 code for
the computation of both the original simulation and the
specified derivatives.
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The modified version of CFL3D is able to compute
the aircraft forces and moments as a function of the
three body-axis orthogonal components (p, q, and r) of
the rotation vector. The application of ADIFOR to the
modified version of CFL3D produced a code that
computed the forward mode derivatives of the aircraft
body-axis force and moment coefficients (CN, CA, CS,
Cl, Cm, and Cn) with respect to the three body-axis
rotation rates (p, q, and r) and the flow angles of attack
(α) and sideslip (β).

The latest beta version of CFL3D employs dynamic
memory allocation and MPI libraries for ease of use
and efficient, scalable parallelization. These
implementations are not standard F77 features, and
therefore previous releases of ADIFOR cannot handle
the code without manual preprocessing and
postprocessing. The latest release of ADIFOR 3.011 has
reduced or eliminated much of the manual processing
associated with the MPI libraries; techniques for
handling the dynamic memory allocation libraries are
being developed.

Examples and Results
The two examples in this study were a 2-D Euler

study of NACA0012 airfoil and a 3-D turbulent N-S
calculation on the ICE configuration6 (Fig. 1). The
NACA0012 study will be detailed first, because it was
used for initial validation by comparisons to existing
methods.

NACA0012 Dynamic Derivatives
The NACA0012 study focused on the effect of

pitch rate on the coefficients of normal force (Fig. 3)
and pitching moment (Fig. 4) at zero deg angle of
attack and zero pitch rate. The derivatives (CNq, Fig. 3,
and Cmq, Fig. 4) of these force and moment
coefficients with respect to nondimensional pitch rate
were computed by the ADIFOR-generated, noninertial
CFL3D code (CFL3D.NI.AD). The pitch rate
derivatives are nondimensionalized by dividing by the
airfoil chord and multiplying by two times the free
stream velocity. The NACA0012 pitching moment
center is located at the leading edge of the airfoil. The
convergence history of the derivative values is shown
in Figs. 3 and 4. The discontinuities in the derivative
convergence history are due to mesh sequencing from
a coarser to a finer mesh every 500 iterations. A
maximum of three levels of multigrid was employed
on the finer meshes. The 2-D grid dimensions (49 ×
13, 97 × 25, 193 × 49, and 385 × 97) are denoted for
each mesh sequencing level. The derivative values are
compared to results computed by a similar method
published by Limache and Cliff (SFLOW),5 a panel
method (QUADPAN),12 and a vortex lattice method
(VORLAX).13

These 2-D NACA0012 cases shown in Figs. 3 and
4 were chosen for initial validation of CFL3D.NI.AD.
To improve convergence, a blend of half standard
CFL3D and half CFL3D low-Mach-number
preconditioning was applied for the 0.1 Mach (Figs. 3a
and 4a) case.  This preconditioning option was not
applied to the 0.5 Mach (Figs. 3b and 4b) or 0.8 Mach
(Figs. 3c and 4c) cases. Note that the CFL3D.NI.AD
derivative values are in excellent agreement with the
SFLOW values. For the 0.1 and 0.5 Mach cases, the
differences between CFL3D.NI.AD and SFLOW,
although small, are most likely due to the formulation
differences between the flow solvers in CFL3D.NI.AD
and SFLOW. The SFLOW code employs the
hand-coded sensitivity equation technique and an
unstructured grid discretization, whereas
CFL3D.NI.AD is an automatically differentiated
structured grid formulation.

The 0.8 Mach case (Figs. 3c and 4c) shows poor
convergence properties. The poor convergence of
CFL3D.NI.AD at 0.8 Mach may be due to the
interaction of a shock, the flux limiter implemented in
CFL3D, and the automatic differentiation technique.
The CFL3D smooth flux limiter1 tuned to κ = 1/3 was
employed for the NACA0012 study. This poor
convergence may be due to the automatic
differentiation technique attempting to formulate the
continuous derivative of a shock and flux limiter,
which does not have a continuous derivative. The 0.8
Mach case is also the worst comparison to SFLOW.
Only the final value for SFLOW is quoted in Ref. 5;
therefore the SFLOW 0.8 Mach case may or may not
be fully converged. The convergence was not
improved by disabling multigrid calculations or
performing additional iteration cycles. At 0.8 Mach,
the final value of CFL3D.NI.AD and SFLOW differ in
normal force pitch rate derivative by 4.4% (Fig. 3c)
and in pitching moment pitch rate derivative by 8.9%
(Fig. 4c).

ICE Pathlines at Zero Rotational Rate
After CFL3D.NI.AD was validated by comparison

with SFLOW, the ICE configuration (Fig. 1) flow
structure was examined with pathlines. These pathlines
are shown to illustrate the changes in airflow structure
with increasing angles of attack. Pathlines for the
starboard half-span of the ICE configuration are shown
in Fig. 5. The pathlines were seeded slightly ahead of
the sharp leading edge (just outside the boundary
layer). The pathlines were computed from a full-span
N-S CFL3D solution on a grid with approximately 3
million cells. These symmetric solutions in Fig. 5 were
calculated at 0.6 Mach, zero deg angle of sideslip, zero
rotational rate, and various angles of attack. All ICE
CFL3D solutions in this study were computed with the
S-A turbulence model at a Reynolds number of
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2,490,000 per foot or 71,760,000 per mean
aerodynamic chord. Three levels of multigrid were
used for the fine grid solution of the 0–15 deg angle of
attack cases and multigrid was disabled for the fine
grid solution of the 20–30 deg angle of attack cases.

The structure of the symmetric flow depicted in
Fig. 5 aids interpretation of the subsequent figures,
which depict force, moment, and stability derivative
information at these flight conditions. Note the
attached flow at 5 deg angle of attack (Fig. 5a). Weak
leading edge vortical flow was present at 10 deg angle
of attack (Fig 5b). This initial leading edge vortex
structure gained strength at 15 deg angle of attack (Fig.
5c). A vortex burst developed near the trailing edge at
20 deg angle of attack (Fig. 5d). This vortex burst
structure is identified by an abrupt streamwise increase
in vortex diameter. The initial vortex burst structure
intensified and moved forward at 25 and 30 deg angles
of attack (Fig. 5e and 5f).

ICE Forces, Moments, and Lateral Derivatives
A summary of the figures depicting ICE forces,

moments, and stability derivatives in this study is
given in Table 1. Note that the elements assumed zero
would become significant at a nonzero angle of
sideslip, roll rate, or yaw rate. The ICE angle-of-attack
derivatives are not presented in this study, but are
presented in Ref. 6 for 0–10 deg angles of attack. The
orientation of the six forces and moments, two flow
angles, and three body-axis rotational rates is shown in
Fig. 1. Figure 6 shows a comparison of longitudinal
forces and moment at 0.6 Mach, zero deg angle of
sideslip, and zero rotational rate. The moment
reference center of the ICE is located longitudinally at
39% of the mean aerodynamic chord (MAC) and a
distance of 16% of the MAC below the body. The
comparison is the wind tunnel data (solid line, WT)
present in the ICE simulator database6 and CFL3D
(dashed line). Coefficients of normal force, axial force,
and pitching moment are shown in Fig. 6a, 6b, and 6c,
respectively.

Figure 6 shows good agreement between WT and
CFL3D. The WT data has more detail because it was
measured at approximately 1 deg increments, which
were smaller than the 5 deg increments of the CFL3D
calculations. There is no flow visualization information
available for the WT data, but the CFL3D pathlines
will be used to infer the effects of flow structure on the
CFL3D calculations, which may also indicate the flow
structure effects on WT measurements. Note that the
initiation and strengthening of vortical flow between 5
and 15 deg angles of attack (Fig. 5a–5c) increased the
normal force (Fig. 6a). The increasing strength of the
vortex flow and the forward movement of the burst
location over the wing between 20 and 30 deg angles
of attack (Fig. 5d–5f), increased the pitching moment

(Fig. 6c) which resulted in static longitudinal
instability above 15 deg angle of attack. Note that
CFL3D captures the radical change in Cm measured by
WT (Fig. 6c).

Figure 7 shows the comparison among the lateral
angle of sideslip derivatives for three
central-finite-difference estimates from wind tunnel
data6 (CD-WT) and an ADIFOR-generated CFL3D
solution (CFL3D.AD). The CFL3D.AD derivatives are
dashed lines and the CD-WT derivatives are the
symbols with a central-finite-difference step of ±2, ±4,
and ±6 deg angle of sideslip for the circle, square, and
diamond, respectively. The ±2 deg CD-WT data is
connected with solid lines because the smallest
central-finite-difference step (±2) is presumed to be the
most accurate of the three finite difference step sizes
for small sideslip disturbances. All three finite
difference step sizes are shown to give an indication of
the nonlinearities or measurement noise in the wind
tunnel data. The derivatives in Fig. 7 are presented in
the units of deg−1.

The effects of the vortical flow structure (Fig. 5)
can be seen clearly in the lateral force and moments
angle-of-sideslip derivatives (Fig. 7). The initiation
and strengthening of vortical flow between 5 and 10
deg angles of attack (Fig 5a and 5b) can be interpreted
to have sharply influenced the angle-of-attack trends of
CSβ and Cnβ (Fig, 7a and 7c) computed by CD-WT
and CFL3D.AD. Then, the derivatives CSβ and Cnβ
(Fig. 7a and 7c) dramatically reversed angle-of-attack
trends above 10 deg angle of attack. The CFL3D.AD
Clβ (Fig. 7b) derivative showed excellent agreement
with CD-WT for 0 to 15 deg angles of attack. The Clβ
comparison deteriorated at higher (20–30 deg) angles
of attack.

As angle of sideslip varies, each wing experiences
different effective leading-edge sweep angles. Due to
the highly swept (65 deg) leading edge of the ICE
configuration the vortical flow field over the wing may
be sensitive to changes in effective leading-edge sweep
angle. Therefore, the calculation of a vortex burst
structure that formed symmetrically at 20 deg angle of
attack (Fig. 5d) may be produced asymmetrically at
lower (10–15 deg) angles of attack. An asymmetric,
bursting vortex structure may have been responsible
for the dramatically reversed angle-of-attack trends in
the lateral derivatives (Fig. 7). The ICE configuration
does not have any vertical surfaces, so the magnitude
of CSβ and Cnβ (Fig. 7a and 7c) was reduced as
compared to a configuration with vertical surfaces. The
small magnitude of CSβ and Cnβ may have hindered
measurement accuracy and exacerbated comparison of
CD-WT with CFL3D.AD.
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ICE Dynamic Derivatives
Figures 8 and 9 show the dynamic derivatives

computed by the DYNAMIC14 code and
CFL3D.NI.AD. The DYNAMIC code utilized strip
theory and the results of the high-angle-of-attack
stability and control prediction code HASC15,16 to
calculate the dynamic derivatives. The HASC code
employs VORLAX13 and empirical corrections to
predict configuration forces and moments at various
flow angles and rotational rates. The derivatives were
computed at zero rotational rate, zero angle of sideslip,
and various angles of attack. The CFL3D.NI.AD
dynamic derivatives were computed assuming
rotations about the moment center of the configuration,
which is located slightly below the body. The
longitudinal pitch rate derivatives CNq and Cmq are
shown in Fig. 8a and 8d, respectively. The longitudinal
dynamic derivatives were nondimensionalized by
dividing by the mean aerodynamic chord (345 in.) and
multiplying by two times the free stream velocity.

The rolling moment dynamic derivatives Clp and
Clr are shown in Fig. 8b and 8e, respectively. The
yawing moment dynamic derivatives Cnp and Cnr are
shown in Fig. 8c and 8f, respectively. The side force
dynamic derivatives CSp and CSr are shown in Fig. 9a
and 9b, respectively. The lateral dynamic derivatives
were nondimensionalized by dividing by the wingspan
b (450 in.) and multiplying by two times the free
stream velocity. There was no forced, oscillatory
motion wind tunnel data for comparison.

Both codes, CFL3D.NI.AD and DYNAMIC,
showed fairly good comparison. Both of the
CFL3D.NI.AD pitch rate (q) derivatives (Fig. 8a and
8d) show a local maximum or a minimum near 5 deg
angle of attack. Note that the CFL3D.NI.AD
calculation of Cmq (Fig. 8d) was consistently more
negative than the combined analytical and vortex
lattice method of DYNAMIC and VORLAX. This
trend agrees with those of both SFLOW and
CFL3D.NI.AD when compared to VORLAX for the
2-D NACA0012 case (Fig. 4).

The roll rate (p) derivatives (Figs. 8b, 8c, and 9a)
also showed a reversal of angle of attack trends at 5
deg angle of attack. The reversals of the q and p
derivative trends at 5 deg angle of attack corresponded
to the indication of vortical flow at 10 deg angle of
attack in Fig. 5b. These p derivatives also showed
another local extreme at 15–20 deg angle of attack,
which was slightly below the indication of vortex
bursting in the static pathlines (Fig. 5d). A roll rate
creates differential angles of attack on each wing,
which may induce asymmetric vortical burst structures
at lower angles of attack than a zero-roll-rate
symmetric case.

The yaw rate (r) derivatives (Figs. 8e, 8f, and 9b)
had consistent trends in angle of attack at 15 deg angle

of attack and lower. These trends became less
consistent at 20, 25, and 30 deg angles of attack, which
corresponded with the initial indication of a symmetric
vortex burst structure in Fig. 5d.

The CFL3D.NI.AD differentiated flow solver had
convergence difficulties at 20, 25, and 30 deg angles of
attack. The 30 deg angle of attack case never reached a
steady-state value, so an average of the last 2 thousand
iterations is presented. These convergence difficulties
may have been due to the presence of bursting vortex
structures, with their inherent unsteadiness and
increased sensitivity to disturbances. These high
angle-of-attack conditions may be more suitable to a
time-accurate solution, but in the interest of
minimizing computational resource requirements, that
approach was not attempted in this study.

ICE Pathlines at Nonzero Rotational Rates
Figure 10 shows the ICE configuration at 0.3

Mach, 15 deg angle of attack and zero deg angle of
sideslip, performing velocity vector rolls at various
rotational rates. In these velocity vector rolls, the
rotation vector was parallel to the free stream velocity
vector; this condition simulated a wind tunnel
rotary-balance test. These solutions were computed by
the noninertial, modified CFL3D (CFL3D.NI) code.
The rotational rate (Ω) was nondimensionalized by
multiplying by the wingspan b (450 in.) and dividing
by two times the free stream velocity (u∞), with a
positive rotational rate indicating the starboard wing
was descending. The 0.2 and 0.4 rotational rate cases
(Fig. 10b and 10c) showed a much tighter vortex core
on the ascending, port wing than the descending,
starboard wing. The 0.4 rotational rate case (Fig. 10c)
depicted a vortex burst on the descending, starboard
wing. From this point of view, the vortex wakes in Fig.
10b and 10c appear to be converging, but actually were
spiraling around the rotation vector.

ICE Rotary-Balance and Noninertial CFL3D
Comparison

Figure 11 shows a comparison of wind tunnel
rotary-balance data6 (ROT-BAL, solid line) and
CFL3D.NI (dashed line) at 0.3 Mach, 15 deg angle of
attack, and zero deg angle of sideslip. Mach 0.3 was
chosen to simulate the incompressible conditions of the
low-speed, rotary-balance tests. The ICE configuration
was rotated about the moment center of the
configuration, which is located slightly below the
body. The figure shows the change (∆) in force or
moment coefficient between cases nonrotating and
rotating about the velocity vector. The rotation rate (Ω)
about the velocity vector was nondimensionalized by
multiplying by the wingspan b (450 in.) and dividing
by two times the free stream velocity (u∞), with a
positive rotational rate indicating the starboard wing
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was descending. Note that nonlinear effects with
rotational rate were modeled in CFL3D.NI.

The increase in normal force (∆CN, Fig. 11a) due
to rotation was very similar between ROT-BAL and
CFL3D.NI.  The change in axial force (∆CA, Fig. 11b)
due to rotation was very similar in magnitude between
ROT-BAL and CFL3D.NI, but opposite in sign. The
change in pitching moment (∆Cm, Fig. 11c) due to
rotation was assumed to be an even function as
calculated by CFL3D.NI, but ROT-BAL showed
inconclusive trends. The change in side force (∆CS,
Fig. 11d) due to rotation was assumed to be an odd
function as calculated by CFL3D.NI, but ROT-BAL
showed inconclusive trends. The change in rolling
moment (∆Cl, Fig. 11e) due to rotation was the best
lateral comparison of CFL3D.NI with ROT-BAL. The
change in yawing moment (∆Cn, Fig. 11e) due to
rotation calculated by CFL3D.NI was much greater in
magnitude and opposite in sign of the ROT-BAL trend.

The nonlinear effects with rotational rate as
calculated by CFL3D.NI in Fig. 11 can be correlated to
the calculation of a vortex burst structure over the
descending wing as illustrated in Fig. 10b and 10c. The
difference between ROT-BAL and CFL3D.NI
(highlighted in Figs. 11b, 11c, and 11f) is currently
under investigation. A possible explanation of
ROT-BAL asymmetries may be model asymmetries or
installation misalignments. The poor comparisons of
ROT-BAL and CFL3D.NI may be due to rotation
about different locations for the experimental and
computational cases. The CFL3D.NI code simulated
rotation about the reported moment center of the
configuration, which is outside the model. The
ROT-BAL tests may or may not have rotated the
model about that moment center location.

Timing
Table 2 describes the processors, wall time, and

RAM required by the original CFL3D, CFL3D.NI, and
CFL3D.NI.AD. The column labeled “Independents”
indicates whether function only (zero independents) or
function plus derivatives with respect to angle of
attack, angle of sideslip, roll rate, pitch rate, and yaw
rate (five independents) were calculated. The column
labeled “Processors” indicates the number of SGI
Origin 2000™ (O2K) processors employed for the
calculations. All three parallel versions of the CFL3D
code employed in this study use one of the processors
for administrative tasks, so the number of actual
computing processors is one less than the number
quoted in the “Processors” column. The four-processor
runs were performed on a NASA Langley
Multidisciplinary Optimization Branch four-processor
O2K with 4 Gb RAM.  The 14-processor runs were
performed on a HPCCP 16-processor O2K with 12 Gb

RAM. By means of a batch queuing system, the
16-processor O2K total wall time was achieved
through multiple 45 min runs. The 16 processor O2K
had significant shutdown and restart overhead
(approximately 10%), which adversely affects total
wall time for the CFL3D.NI.AD examples.

Note that CFL3D.NI required 0.5 hour (3.8%)
more execution time than the original CFL3D
steady-state execution wall time for the ICE
configuration with the S-A turbulence model. The
corresponding wall time increase for 2-D and 3-D
Euler calculations due to noninertial modifications was
approximately 15%. The noninertial modifications had
a larger penalty for Euler than turbulent N-S solutions
because N-S and S-A solutions required more
calculations per iteration than Euler solutions. The
increased calculations per iteration of the turbulent N-S
solution masked the same number of noninertial
modification calculations per iteration of the turbulent
N-S and Euler solutions.

 A time-accurate CFL3D solution that would
emulate a CFL3D.NI solution was estimated to require
approximately 175 hours, or more than an order of
magnitude increase in wall time over a CFL3D.NI
calculation. The central-finite-difference estimate wall
time was calculated by multiplying the CFL3D.NI time
by 11 (one function plus ten perturbed solutions) to
yield 148.5 hours, which was scaled between the two
02K computers assuming perfect, linear speedup with
a ratio of 3 worker processors to 13 worker processors.
In other words, 13.5 × 11 = 148.5 and 148.5 × 3 / 13 ≈
34. The central-difference estimate required 9.7%
more wall time than CFL3D.NI.AD between 0 and 15
deg angles of attack. Compared to the 0–15 deg angle
of attack solutions, CFL3D.NI.AD required three to
four times the wall time at 20, 25, and 30 deg angle of
attack, due to differentiated flow solver convergence
difficulties.  The vortex burst structures at the higher
(20–30 deg) angles of attack (Fig. 5d–5f) may have
been responsible for the convergence difficulties.

Conclusions
An initial application of ADIFOR to CFL3D with

constant-rate noninertial modifications to compute
constant-rate rotary stability derivatives was
completed. This application was validated for a 2-D
NACA0012 Euler case by comparison to the SFLOW
code, a similar formulation. ADIFOR-generated
noninertial CFL3D derivatives of a 2-D NACA0012
airfoil showed good comparison with existing methods
at 0.1 and 0.5 Mach. Symmetric vortical flow
structures for the ICE configuration were identified by
means of computational flow visualizations of
turbulent N-S calculations at 5–30 deg angles of attack.
The nature of these vortical flow structures was
correlated to the behavior of forces, moments,
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angle-of-sideslip derivatives, and rotational rate
derivatives at 0–30 deg angles of attack. Flow
visualization techniques were also applied to
computational solutions for velocity vector rolls at 15
deg angle of attack; these visualizations depicted
asymmetric vortex burst structures at a nondimensional
roll rate of 0.4. The effect of these asymmetric vortical
flow structures was observed in the nonlinear effects of
rotation rate on forces and moments.

The application of noninertial, constant-rate
calculations was demonstrated for compressible and
viscous flows on an unconventional configuration.
This new CFL3D capability proved to be an accurate
method to complement or reduce dependency on
forced-motion rotary or oscillatory wind tunnel
measurements. This noninertial reference frame
modification to CFL3D also has direct application to
turbomachinery studies. The noninertial reference
frame theory utilized to formulate the source terms in
CFL3D.NI can easily be extended to include angular or
translational acceleration terms to model more
generalized aircraft or grid motions. The application of
ADIFOR to the modified version of CFL3D has great
promise as a dynamic, constant-rate rotary derivative
prediction tool for stability and control work in design
studies and multidisciplinary design frameworks.
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Table 1  Summary of Figures Presented for the ICE Configuration at 0.6 Mach, β = 0, p = 0, q = 0, r = 0.
CN§ CA§ Cm§ CS§ Cl§ Cn§

Function 6a 6b 6c 0 0 0
Angle of attack derivative x, Ref. 6 x, Ref. 6 x, Ref. 6 0 0 0
Angle of sideslip derivative 0 0 0 7a, Ref. 6 7b, Ref. 6 7c, Ref. 6
Pitch rate derivative 8a x 8d 0 0 0
Roll rate derivative 0 0 0 9a 8b 8c
Yaw rate derivative 0 0 0 9b 8e 8f
§0 – Assumed zero for a laterally symmetric configuration; x – not shown, but assumed nonzero.

Table 2  Execution Time and RAM for CFL3D, CFL3D.NI, and CFL3D.NI.AD of ICE N-S and S-A.
Description Independents Processors Wall Time Total RAM
CFL3D 0 4 13 hours 1468 Mb
CFL3D.NI 0 4 13.5 hours 1468 Mb
Original time-accurate CFL3D estimate 0 4 175¶ hours 1468¶ Mb
Center-finite-difference CFL3D estimate 5 14 34¶ hours 1468¶ Mb
CFL3D.NI.AD, 0–15 α 5 14 31 hours 9828 Mb
CFL3D.NI.AD, 20–30 α 5 14 90–120 hours 9828 Mb
¶Estimates.
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Fig. 2  Inertial and noninertial reference frames.

Fig. 1  Lockheed Martin Tactical Aircraft Systems ICE configuration.
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Fig. 3  Convergence history of 2-D Euler
NACA0012 airfoil normal force

pitch rate derivatives; α = 0, q = 0.

Fig. 4  Convergence history of 2-D Euler
NACA0012 airfoil pitching moment
pitch rate derivatives; α = 0, q =0.
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a) Angle of attack = 5 deg d) Angle of attack = 20 deg

b) Angle of attack = 10 deg e) Angle of attack = 25 deg

c) Angle of attack = 15 deg f) Angle of attack = 30 deg

Fig. 5  Forward looking aft at the upper surface of the starboard half-span of ICE configuration,
depicting pathlines; 0.6 Mach, β = 0, p = 0, q = 0, r = 0.

Initial vortex
structure

Vortex burst
structure

Vortex burst
structure

Vortex burst
structure
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Fig. 6  ICE static longitudinal forces and moment
coefficients; 0.6 Mach, β = 0, p = 0, q = 0, r = 0.

Fig. 7  ICE static lateral force and moments angle
of sideslip derivatives, deg−1; 0.6 Mach, β = 0,

p = 0, q = 0, r = 0.
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Fig. 8  ICE configuration rate derivatives;
0.6 Mach, β = 0, p = 0, q = 0, r = 0.
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Fig. 9  ICE configuration side force rate derivatives;
0.6 Mach, β = 0, p = 0, q = 0, r = 0.

a) Rotating at (Ω b) / (2 u∞) = 0

b) Rotating at (Ω b) / (2 u∞) = 0.2

c) Rotating at (Ω b) / (2 u∞) = 0.4

Fig. 10  ICE configuration velocity vector rolls;
0.3 Mach, α = 15, β = 0.

Vortex burst
structure
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Fig. 11  Comparison of ICE configuration rotary balance wind tunnel data to noninertial CFL3D;
0.3 Mach, α = 15, β = 0.


